Atlanta Geological Society


AGS Logo

 

Monthly AGS Meeting

Join us Tuesday, Nov 24, 2020 6:45 PM Eastern Time for our monthly AGS virtual meeting via Zoom.  This month’s presentation is “Black Granite from Hell” presented by Steven Stokowski.

Join Zoom Meeting
Abstract:  Black Granite from Hell

In the center of the Rhode Island Veterans Cemetery is a large Ceremonial and Commemorative area.  This dramatic, horseshoe-shaped memorial has sweeping cast-in-place concrete walls with fifty-eight, inlaid, 6-foot high, black granite panels having engraved veterans’ names.  During the initial 1998-99 construction phase, the project was relatively trouble-free except that the availability of the large stone panels delayed the project for 7 months.  The original granite specified was from Zimbabwe, but the architect actually wanted stone from South Africa, which was not available because of sanctions.  Of the “black granites” available, the architect then approved a very dark and coarse-grained “granite” from Canada.  Soon after installation, most of the stone panels progressively developed popouts and cracks.  The only realistic solution to the pervasive failure was to replace all the panels, although the manufacturer would not admit to any materials problem and supply replacement panels free-of-charge.  Ultimately, there was no inexpensive and amicable solution for any of the participants in this project.  The state declared non-performance and suspended the project engineer, the design architect, and the contractor from bidding on state projects for two years.  This resulted in many lawsuits that were resolved to nobody’s satisfaction, but with the vindication of some of the parties.  The state ultimately slightly redesigned the memorial, demolished the 1999 construction, and caused a new memorial to be constructed with stone from another source.

The stone panels deteriorated because the dimension stone product was inherently defective at the microscopic level.  Saponite, a water-sensitive, swelling clay, is present in the stone.  It did not swell in the 1999 Rhode Island drought that followed the installation, but, as soon as it began to rain, the iron-rich saponite absorbed water, causing popouts and stressing the stone until it cracked.  Black granite is a stone industry term for black, hard, crystalline rocks such as norite, gabbro, and anorthosite, as compared to fine-grained crystalline rocks such as basalt, or the black varieties of softer calcitic rocks such as limestone or marble.  In addition to saponite alteration, the Peribonka® anorthosite contains deleterious ore minerals such as chalcopyrite, younger veins of secondary calcite, and later antigorite veins.  The calcite and antigorite veins are weak planes in the stone that cracked when the panels became stressed by the swollen saponite.  These natural weak points are not defects, but the natural locus of cracks when the stone was stressed to failure.

Biography: 

Steven Stokowski, a registered Professional Geologist, is the owner and materials geologist of Stone Products Consultants. Steve has extensive geological and petrographic experience across the US. He has a MS in Geology from the South Dakota School of Mines and Technology and a BS in Geology from George Washington University. Steve is the 2014 recipient of the Herbert C. Hoover Award from the Washington DC Section of the Society for Mining, Metallurgy and Exploration (SME), the 2017 Robert W. Piekarz Award from SME, and the Chair of the Industrial Minerals and Aggregates Division of SME.  He is Registered or Certified as a Geologist in Georgia, Maine, Virginia and other states.

_______________________________________________________________

Tuesday October 27, 2020 at 6:30 pm Eastern Time
“HIDING IN PLAIN SIGHT”:  EVIDENCE FOR A MESOZOIC GENESIS OF THE PHREATIC KARST NETWORK IN THE APPALACHIAN GREAT VALLEY” presented by Robert Denton, CPG, of Terracon Consulting.

Abstract:
Ever since the seminal research of William Davis in the early 20th century, the paradigm for the development of Appalachian cavern systems has regarded regional downcutting and lowering of the base level since the Late Miocene epoch as the primary mechanism of speleogenesis. The majority of cave systems were considered no older than the Irvingtonian North American Land Mammal Age (Early through Middle Pleistocene), based on dating of vertebrate index fossil remains found in cavern fill sediments. Nevertheless, since the mid-19th century, there have been reports that suggest the parent phreatic network of the Appalachian Great Valley region may be far older.

Paleogene dates were first suggested for lignite deposits found in karst depressions at Brandon, Vermont, and Pond Bank, Pennsylvania, as early as 1864. Studies of the iron deposits along the west pediment of the Blue Ridge revealed a continuous lineament of karst-related features, often associated with kaolin and lignite. In the 1940s, kaolin and karst bauxite deposits stretching from Virginia to Alabama were discovered. Subsequent palynological analysis of the cave fill and lignite revealed these features ranged from the Turonian stage (93.8 – 89.8 Ma) of the Late Cretaceous through the Early Miocene (20.4 – 16.0 Ma), with most dating from the Early Paleogene.

We propose that the majority of karst-associated laterites (kaolin, bauxite) were probably formed by intense weathering during the Paleocene/Eocene Thermal Maximum (PETM), although a brief period of warming during the Late Miocene may have contributed to the development of laterites present at the Brandon lignite locality. Fossil pollen in karst fills as old as the Turonian stage of the Late Cretaceous suggests an Early Mesozoic age for the probable hypogene speleogenesis of the parent network. Thus, the existing epikarst cavern systems of the Great Valley may be the exposed remnants of an ancient phreatic network that has been repeatedly filled and emptied of sediment since its origin. The recent discovery of karst bauxite in a cave in Virginia suggests that ancient sediments may be more widespread in existing cavern systems than previously thought, but may have been overlooked.

Biography – Robert K. (“Bob”) Denton Jr. was born in 1953 in Montclair, New Jersey. He received his Bachelor’s Degree in Natural Science from Thomas Edison State College in Trenton, NJ in 1988. Bob worked as a research scientist in the chemical and medical device industries for over 20 years, specializing in physical methods of analysis. He relocated to Winchester, Virginia in 1995, and is currently a senior geologist and karst geology “Subject Matter Expert” (SME) with Terracon’s DC Metro office, located in Ashburn, VA. His specialties include environmental science, engineering geology, hydrogeology, and karst characterization, remediation and management. He is considered a national expert on stormwater management in karst terrains.
Bob has been an avid caver since his teen years, and this led to his interest in geology from a very early age. He received formal training in geology and vertebrate paleontology field methods during the summer of 1972 while serving on an expedition to the Bighorn Basin of Wyoming and Montana sponsored by the Museum of Comparative Zoology at Harvard University. Bob is the discoverer of the Ellisdale Fossil Site in NJ, and the Zuni Basin dinosaur site in New Mexico, and has formally described two new taxa. He has been a research associate with the New Jersey State Museum since 1979, and continues in that role today.
Bob is a Certified Professional Geologist (CPG), a State of Virginia Certified Professional Soil Scientist (CPSS) and a State of West Virginia Licensed Environmental Remediation Specialist (LRS). He is a member of the National Speleological Society (NSS), Society of Vertebrate Paleontology (SVP), Association of Environmental and Engineering Geologists (AEG), and the American Chemical Society (ACS). Bob has published numerous articles on subjects including karst, vertebrate paleontology, and materials science. He has been awarded five (5) United States Patents for materials science “discovery of matter” and chemical (process) engineering.

_________________________________________________________________

Tuesday, August 25, 2020 at 6:30 pm Eastern Time
Dr. Paul Santi of the Colorado School of Mines.

Geology and the Birth of Landscape Photography: Following Vittorio Sella, Bradford Washburn, and Ansel Adams.

Abstract: The Foothills Art Center in Golden, Colorado hosted an extensive landscape photography exhibit in 2015, including works from Ansel Adams’ Legacy collection, from Vittorio Sella, the early photographer who inspired him, and from Bradford Washburn, the pioneering aerial photographer.  Recognizing the importance of geology in these images, the Center contacted the Colorado School of Mines and requested help preparing geology labels to accompany labels written by the curator.  Over a five month period, seven students selected by application prepared labels to accompany 37 of the photos, directed by two faculty: a geologist and a science historian.  Students independently researched the geology of the photographs, which often required a fair amount of detective work for some of the century-old images.  They then wrote, edited, and trimmed the label text, struggling to stay under the 120 word limit, yet keeping the content interesting, unique, and understandable by a lay audience.  Every student edited every label at least four times.  Alpine scenes dominated, but subjects also included glaciated landscapes, arid terrain, sand dunes, rivers, and contrasts in weathering.   The exhibit ran from June 13 – August 30, with several thousand visitors exposed to the linkage between the stunning landscapes and the geology that created them.  In this presentation, we will view many of these images, learning the geologic setting, how the geology contributed to the artistic elements of the photo, and how to look at geology from an artist’s eye.

Paul M. Santi
Director – Center for Mining Sustainability
Professor
Dept. of Geology and Geological Engineering
Colorado School of Mines
Golden, CO 80401

______________________________________________________________________

Tuesday, July 28, 2020 at 6:45 pm
“ITRC’s Characterization & Remediation of Fractured Rock Webinar”
Presented by Kris McCandless, Virginia DEQ

Abstract:
From 2015 to 2018, when it was published online, the Interstate Technology and Regulatory Council (ITRC’s) Characterization and Remediation of Fractured Rock web-based document and subsequent internet-based training have enlightened thousands of new and experienced geologists and environmental scientists with the practical and applicable aspects of structural geology, hydrogeology, and geography that we all had as core classes in our training. I helped to draft portions of the document starting in 2015 when I joined the Virginia Department of Environmental Quality, but more importantly, I was asked in late 2018 to provide the introduction for the internet-based training of this important document. And I have done that at least seven times in the past 2 years, learning something new every time I listen to my fellow speakers present their parts. Knowing not everyone in this audience works in the environmental field, I will focus the training on some of the structurally geologic points as they dictate groundwater flow through the fractured media, and will use examples of “floaters and sinkers” (types of contaminants) in that discussion and why their characteristics are important for investigation and remediation. In my consulting days (25 of my 30 year career), I took it as a compliment that one boss called me a “rabid geologist”, as I kept my Brunton compass and my two types of rock hammer in my field vehicle, always clambering on an outcrop for strike and dip measurements, or standing back from it to find the fracture pattern that would give me a clue to how groundwater might be flowing beneath an impacted site.

Bio
From 1998 until about 2012, I was active in AEG (Assoc of Engineering and Environmental Geologists), serving in all offices except treasurer of the local Virginia-Maryland-DC Chapter, where Steve Stokowski and I crossed paths. I graduated from George Mason University in Fairfax, VA in 1988 with a BS in Geology, took Indiana University’s Field Camp in Cardwell, Montana in 1987 and passed the ASBOG exam in Virginia to obtain my CPG license in 2002, which I have maintained. After presiding for many AEG dinner meeting presentations and now here at the Atlanta Geological Society, this will NOT be a boring presentation. There might be one graph, but I’ll cover it quickly!

Kristopher (Kris) McCandless, CPG
Environmental Geologist
Virginia Dept. of Environmental Quality
13901 Crown Court, Woodbridge, VA 22193
Direct: 703-583-3833; Main: 703-583-3800

________________________________________________________________

Notes from the June Meeting:
June 30th, 2020 at 6:45 pm

Carolina Bays are relict thermokarst lakes from the time of the last glaciation

Presented by:  Dr. Chris Swezey, U.S. Geological Survey, Reston, VA

 Abstract:

New studies combining LiDAR imagery and field work have revealed the presence of widespread eolian sands that are now stabilized by vegetation throughout the U.S. Atlantic Coastal Plain.  Optically stimulated luminescence (OSL) dates from these sands have yielded ages ranging from ~92–5 thousand years ago (ka), but most of the dates are approximately coincident with the last glacial maximum (LGM).  These eolian sands are present in river valleys, in the Carolina Sandhills region, and on upland areas of the northern coastal plain.  Eolian sands are also present as low-relief ridges on the south and east margins of Carolina Bays, which are oriented oval to circular depressions on the Atlantic Coastal Plain.  Cores in Carolina Bays and their associated ridges reveal that they are primarily surficial features consisting of a few meters of sand and/or muddy sand above an unconformity on various older fine-grained substrates that do not show signs of disturbance.  Furthermore, some Carolina Bays show distinct stratigraphic relations with respect to eolian dune fields in river valleys, for example:
(1) Dukes Pond is a Carolina Bay that is inset into (i.e., younger than) eolian dunes in the valley of the Ohoopee River (Tattnall County, Georgia);
(2) Bear Swamp is a Carolina Bay that is inset into (i.e., younger than) eolian dunes in the valley of the Great Pee Dee River (Marion County, South Carolina);
(3) Big Bay is a Carolina Bay that is overlain by (i.e., older than) eolian dunes in the valley of the Wateree River (Sumter County, South Carolina). 

Most published OSL ages from Carolina Bay sand ridges range from ~40–11 ka.  Some Carolina Bays have multiple sand ridges, and ridges closer to individual bays yield younger OSL ages.  The stratigraphic relations and the range of OSL ages suggest that Carolina Bays are relict features that did not form during one event of limited duration.  Instead, they formed episodically during the same time interval as other eolian sands of the coastal plain (e.g., mostly during the last glaciation when conditions were colder, drier, and windier).  This interpretation suggests that Carolina Bays are relict thermokarst lakes.  Such lakes are present today in high-latitude regions, and they develop as a result of thaw and collapse of frozen ground with subsequent modification by lacustrine and eolian processes.  Thus, the distribution of Carolina Bays may provide information about the former distribution of frozen ground.  Although the southern limit of continuous permafrost during the last glacial maximum (LGM) is usually thought to have been located in northern Virginia ~300 km south of the LGM ice sheet margin, the interpretation of Carolina Bays as relict thermokarst lakes suggests that permafrost may have extended as far south as Georgia ~1000 km south of the LGM ice sheet margin.  This distance of ~1000 km from the LGM ice margin compares favorably with studies in Europe (where permafrost is thought to have extended 800-1200 km south of the LGM ice margin) and in Asia (where permafrost is thought to have extended 2000-4500 km south of the LGM ice margin).

Christopher S Swezey
Research Geologist
Florence Bascom Geoscience Center
Email: cswezey@usgs.gov
Phone: 703-648-6444
Fax: 703-648-6953
https://orcid.org/0000-0003-4019-9264
U.S. Geological Survey
12201 Sunrise Valley Drive, MS 926A
Reston, VA 20192

Biography:

Research Geologist (2018-Present), U.S. Geological Survey (USGS) Florence Bascom Geoscience Center, Reston, Virginia.  I conduct basic geologic mapping and research on stratigraphy, sedimentology, and geomorphology.  This work is focused primarily on Paleozoic basins of the eastern United States, and potential applications for water, energy, and mineral resources. 

Research Geologist (2009-2018), USGS Eastern Geology & Paleoclimate Science Center, Reston, Virginia.  I conducted basic geologic mapping and research on stratigraphy, sedimentology, and geomorphology.  This work was focused on the U.S. Atlantic Coastal Plain, for the purpose of understanding the geologic framework and for characterizing Cretaceous and Cenozoic strata that are major aquifers.  

Research Geologist (2000-2009), USGS Eastern Energy Resources Team, Reston, Virginia.  I conducted assessments of undiscovered oil and gas resources, and research on stratigraphy and petroleum systems.  This work was focused primarily on Paleozoic strata of the Appalachian, Michigan, and Illinois basins (USA), for the purpose of understanding National energy supplies, providing input for economic analysis of petroleum resources, and improving knowledge of the stratigraphy and petroleum systems of the basins.
_________________________________________________________________

PG Candidate Workshop

TBA

Speaker: TBA
Subject: TBA

The classes are open to all, membership in the AGS is not required. Please consider joining, the AGS is the most active geologic organization in the Southeast. An application is available here.

Two hours of professional development credit are available for attendees.

Thanks,

Atlanta Geological Society
Professional Registration/Career Development Committee Ken Simonton, P.G.
kws876@gmail.com
Ginny Mauldin-Kinney
ginny.mauldin@gmail.com

Events

The Atlanta Geological Society hosts monthly meetings –
MEETING ONLINE VIA ZOOM DURING THE COVID-19 PANDEMIC.

The AGS monthly meetings are the last Tuesday evening of the month at 6:45 pm.
Join Zoom Meeting.  Contact one of the officers for the meeting link.

The AGS monthly meetings are the last Tuesday evening of the month at the Fernbank Museum of Natural History, 767 Clifton Rd, Atlanta, GA 30307.  We take a summer break in July and an end of year holiday break in December.

(Non-pandemic in-person meetings include free pizza and socializing, a short business meeting and a talk); a monthly workshop for professional geologist candidates and those that just can’t get enough geology; and an annual meeting that includes a BBQ dinner, raffle and a movie in Fernbank’s 4K Laser Giant Screen.

The AGS Professional Geologist Candidate Study Group Workshops meet 10:00 am – 12:00 p.m. the last Saturday morning of the month at the Fernbank Science Center, 156 Heaton Park Drive, Atlanta, GA 30307.  The “last Saturday”  often changes due to holidays, conflicts, etc.; so check here for each workshop date.  CURRENTLY ON HOLD.

Past AGS events:

The  AGS PG Candidate Workshop 

Date:           Saturday, November 23, 2019
Time:           10:00 am – 12:00 pm
Speaker:    Marian Buzon Ph. D
Subject:     Mineralogy
LocationFernbank Science Center
.                      156 Heaton Park Dr NE
.                     Atlanta, GA 30307

The AGS Monthly Meeting

Date:            Tuesday, November 26, 2019
Time:          
6:30 pm – 8:00 pm  Social/networking/free pizza
Location:  
Fernbank Museum of Natural History /767 Clifton Rd Atlanta, GA 30307

 

The AGS does not hold meetings in July or December.

The AGS PG Study Group does not meet in December.

 

Membership

The Atlanta Geological Society has been one of the most active professional groups in the Southeast since its inception in 1991. Our membership and dues are structured simply:

Professional Membership            $25

Student Membership                      $10

Corporate (up to 4 members)     $100

We’ve made it easy for you to pay your membership dues online.

Go to:  https://squareup.com/store/atlanta-geological-society now and update your membership for 2019.

After your payment has been made, please download the membership form, complete the appropriate fields, save and email to John Salvino (Square reports very little information back to the “retailer”).

Alternatively, you could bring the form and your credit card, cash, or check to the next meeting. Or mail it to the address on the form.

Dues are payable at the beginning of the calendar year.

Your membership dues must be up to date to join us for the June  Social.

Benefits of an AGS membership:

  • Location – AGS meets at the Fernbank Museum of Natural History, which is a truly awesome facility central to most of our membership.
  • Cost – AGS membership ($25 general; $10 student) is the most inexpensive for any geological society in the SE.
  • Active – AGS holds ten lectures a year and is one of the most active geological societies in the SE.  Meetings are held the last Tuesday of each month except July and December.
  • AEG – For one of our lectures, AGS co-sponsors with the Association of Environmental & Engineering Geologists to annually present the “Richard H. Jahns Distinguished Lecturer” while in Atlanta.
  • PDH – AGS is recognized by Alabama, South Carolina, and other professional state boards to provide Professional Development Hours for our lectures, as well as field trips and workshops.
  • PG Study Group – AGS offers nearly monthly Professional Geologist development training classes in preparation for taking the ASBOG examinations.  The workshops are generally held the last Saturday of each month except December at the  Fernbank Science Center.
  • Free Food – AGS offers free pizza and Coke at all of our meetings, sandwiches and hors d’oeuvres at the Jahns lecture and a sit-down BBQ dinner at our June social.
  • 4K Laser Giant Screen – As part of the June social, AGS and Fernbank present a free movie.
  • Networking – AGS meetings include professionals, academics, regulators, and others who all share the same interest in geological sciences.
  • Resume – AGS membership and even involvement in one of our many committees will enhance any resume.
  • Be a speaker – need practice for speaking in front of a group, defense of a thesis? AGS would like to help you prepare for your important talk.

Don’t delay join today!